ON EDGE-PRIMITIVE GRAPHS WITH SOLUBLE EDGE-STABILIZERS
نویسندگان
چکیده
Abstract A graph is edge-primitive if its automorphism group acts primitively on the edge set, and $2$ -arc-transitive transitively set of -arcs. In this paper, we present a classification for those graphs that are have soluble edge-stabilizers.
منابع مشابه
On finite edge-primitive and edge-quasiprimitive graphs
Many famous graphs are edge-primitive, for example, the Heawood graph, the Tutte–Coxeter graph and the Higman–Sims graph. In this paper we systematically analyse edge-primitive and edge-quasiprimitive graphs via the O’Nan–Scott Theorem to determine the possible edge and vertex actions of such graphs. Many interesting examples are given and we also determine all G-edge-primitive graphs for G an ...
متن کاملOn (Semi-) Edge-primality of Graphs
Let $G= (V,E)$ be a $(p,q)$-graph. A bijection $f: Eto{1,2,3,ldots,q }$ is called an edge-prime labeling if for each edge $uv$ in $E$, we have $GCD(f^+(u),f^+(v))=1$ where $f^+(u) = sum_{uwin E} f(uw)$. Moreover, a bijection $f: Eto{1,2,3,ldots,q }$ is called a semi-edge-prime labeling if for each edge $uv$ in $E$, we have $GCD(f^+(u),f^+(v))=1$ or $f^+(u)=f^+(v)$. A graph that admits an ...
متن کاملOn the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs
For a coloring $c$ of a graph $G$, the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively $sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$, where the summations are taken over all edges $abin E(G)$. The edge-difference chromatic sum, denoted by $sum D(G)$, and the edge-sum chromatic sum, denoted by $sum S(G)$, a...
متن کاملSe p 20 09 On finite edge - primitive and edge - quasiprimitive graphs ∗
Many famous graphs are edge-primitive, for example, the Heawood graph, the Tutte–Coxeter graph and the Higman–Sims graph. In this paper we systematically analyse edge-primitive and edge-quasiprimitive graphs via the O’Nan–Scott Theorem to determine the possible edge and vertex actions of such graphs. Many interesting examples are given and we also determine all G-edge-primitive graphs for G an ...
متن کاملOn Edge-colouring Indiierence Graphs on Edge-colouring Indiierence Graphs
Vizing's theorem states that the chromatic index 0 (G) of a graph G is either the maximum degree (G) or (G) + 1. A graph G is called overfull if jE(G)j > (G)bjV (G)j=2c. A suu-cient condition for 0 (G) = (G)+1 is that G contains an overfull subgraph H with (H) = (G). Plantholt proved that this condition is necessary for graphs with a universal vertex. In this paper, we conjecture that, for indi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of The Australian Mathematical Society
سال: 2021
ISSN: ['1446-8107', '1446-7887']
DOI: https://doi.org/10.1017/s1446788721000112